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The pertinent intensity observations all reduced to 
an arbitrary scale on which P lc=814  are listed in 
Table 3. For the 200 and 220 reflections one has 
A3/A1 = 1"09, T3/TI =0"90, L~'/L1 = 1.46,p~1(3)/p2 =0.97 
giving a=2.04.  On absolute scale one calculates QI = 
29'1 x 10 -3, Q3=0.54 x 10 -3, and T I =  1.81 x 10 -z cm. 

Table 3. Initial (A) and final (B) intensities 
Reflection A B Calculated 

200 489 807 814 
220 16.3 16.2 16.4 
220* 31 "2 49" 1 - -  

Insertion of the data from Table 3 in equations (6) 

gives XA =2-5 x 10 -2 YA =0"61 

XB= 1"9 X 10 -2 yB = 1"00 ( l ' 01 ) .  

The corresponding values of the secondary extinction 
coefficient g are g a = 4 6  and gB=36. Equation (3) 
suggests that t0_~6 x 10 -4 cm for the "virgin" crystal. 

In other words the data show that the secondary 
extinction in the specimen is small, i.e. that there is 
poor alignment of the mosaic blocks. The initial large 
primary extinction in the specimen is practically elimi- 
nated in the course of the irradiation, i.e. the dimen- 
sions of the coherently scattering regions in the crystal 
are greatly reduced as a consequence of the radiation 
disorder. 

Clearly, the practical usefulness of the proposed 
method for distinguishing between primary and secon- 
dary extinction ought to be given further tests. 

Some of the intensity measurements were made by 
Miss H. A. Plettinger, and the work was in part sup- 
ported by the Advanced Research Projects Agency. 
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It is shown that many experimental diffraction intensities used for structure determination have been 
obtained under conditions of multiple diffraction, and it is pointed out that some of the intensities 
measured under such circumstances may be appreciably in error. 

The intensity effect has been studied theoretically for frequently encountered cases of double, triple 
and quintuple diffraction in imperfect (mosaic) crystals. Exact solutions have been obtained for a plane 
parallel plate and approximate formulas are given for crystals of arbitrary shape. 

The results of the theoretical study show that multiple diffraction may double or triple the extinction 
correction for strong reflections and, in some cases, increase the intensity of weak reflections manifold. 

The first objective of this article is to demonstrate 
that multiple diffraction due to symmetry is a much 
more common phenomenon in crystal structure studies 
by X-rays, electrons or neutrons than is generally 
realized. 

The second purpose is to give the results of a theore- 
tical study of the intensity effects due to multiple 
diffraction in an imperfect crystal. 

Multiple diffraction due to symmetry 

Most intensity measurements reported in the literature, 
and used for structure determination, have been made 
under conditions of multiple diffraction. The classical 
example of symmetry-caused simultaneous diffraction 
is a Laue photograph taken with the incident beam 
parallel to a symmetry axis or plane. Every Laue spot 

of an equivalent set is produced at the same time by 
the same wave length component of the incident 
radiation, and as many as twelve reflections may occur 
simultaneously. 

A more important example of double diffraction 
(case A) is illustrated in Fig. 1. The Laue-Bragg 
equation k i -  ko = H~, where k~ = 2-1u~, is simultane- 
ously satisfied for two reciprocal lattice vectors H1 and 
H2 for which, by symmetry, IHII=IH21. In Fig. 1, 
O is the origin of the reciprocal lattice, H1 and H2 
lie in the plane of the paper, and the circle is the inter- 
section of this plane with the sphere of reflection. The 
situation shown in Fig. 1 is bound to occur for any 
wave-length when the normal beam Weissenberg techni- 
que is used with a non-triclinic crystal rotating about 
[010] (and for any crystal of orthorhombic or higher sym- 
metry rotating about [100] or [001]). Reflections H K L  
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and H K L  occur simultaneously, i.e. all intensity data 
for non-zero layer lines will have been obtained under 
the double diffraction conditions of case A. 

A special situation (however, of  no particular inte- 
rest) arises if, in Fig. 1, IHd = IH2I = IH1-  H2I. The 
center of the sphere of  reflection will in that case lie 
on a threefold axis. 

A common and important case (B) of triple diffrac- 
tion is shown in Fig. 2(a). In this example H1.  H2 = 0, 
and the Laue-Bragg equation is also satisfied for 
H 3 = H I + H 2 .  This type of triple diffraction occurs 
inevitably for any wave-length when the equi-inclination 

Weissenberg technique is u ed with a n0n-triclinic 
crystal rotating about [010] (or with crystals of 
orthorhombic symmetry rotating about [100] or [001]). 
If  the inclination angle is set for the Kth layer, the 
reflections HOL, OKO and HKL will be produced at 
the same time. In other words, all intensity data for 
non-zero layer lines correspond to triple diffraction 
conditions. This fact in respect to the equi-inclination 
Weissenberg technique was first recognized implicitly 
by Fankuchen & Williamson (1956) and explicitly by 
Yakel & Fankuchen (1962). 

Fig. 2(b) demonstrates the special case (B') of triple 
diffraction for which H1 • I - I 2 = 0  and IHll = IH2I. This 
particular situation is thus possible for tetragonal or 
cubic crystals, and will occur for rotation axes [010] 
and [li0]. 

An interesting case (C) of quintuple diffraction, 
possible for hexagonal or cubic crystals, is illustrated 
in Fig. 3. An example is a hexagonal crystal with 
[010] vertical, and crystal and counter set to measure 
the (200) reflection in the horizontal plane. The four 
additional reflections (010), ( l i0) ,  (110) and (2i0) are 
produced at the same time. 

The examples discussed above demonstrate that 
multiple diffraction is a frequent phenomenon with 
commonly used experimental techniques. Indeed, it is 

HI 

O 

Fig. 1. Double diffraction (case A). O is the origin of the 
reciprocal lattice. The vectors H1 and H2 lie in the plane 
of the paper and are given by OHz and 01-12, where OH1 = 
OHz. The center of the sphere of reflection is at C, at a 
height 2-1 cos ~ above the paper. The three wave vectors 
k~ are CO, CHI and CH2. 

H1 

k2 

(a) 

H3 

H, 

k.i 

O H3 

kz 

H:, 

(b) 

Fig. 2. (a) Case B of triple diffraction with HI • H 2 = 0  and 
H3 = Hz + H2. (b) The special case B" of triple diffraction for 
which HI • H2=0 and IHII = Ill21. 

H1 H3 

0 Hs 

Hz H4 

Fig. 3. The quintuple diffraction case C. For this case the points 
OHzHaHsHaH2 form a hexagon. IHll = IH21 and IH31 = IH41. 
H3=2Hz +H2, H4=Hz +2H2 and I-I5 =2Hz +2H2. 
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in general necessary to take special precautions in 
order to avoid making intensity measurements under 
simultaneous diffraction conditions. 

Intensity solutions for a plane parallel plate 

It will be assumed that the crystal specimen under 
study is of mosaic type with moderate or small extinc- 
tion. Accordingly the half width of the homogenous 
and isotropic distribution function W describing the 
misalignment of the mosaic blocks is presumed to be 
much greater than that of the diffraction pattern due 
to a single block. 

When the Laue-Bragg equation k~-  k0 = H~ is satis- 
fied for two or more lattice planes H~, it follows that 
k~-kz = H 1 - H ~ ,  i.e. the equation is also satisfied for 
H~-H~ with k~ now serving as incident beam. Hence, 
multiple diffraction affects the intensities in two ways. 
First, the absorption due to scattering (i. e. extinction) 
will be greatly enhanced. Second, the radiation scat- 
tered in a direction u~ consists not only of the incident 
beam reflected by H~, but also of each diffracted beam 
k~ reflected by H : - H ~ .  In this manner incident and 
diffracted beams form a coupled system, the intensity 
of one beam depending upon the intensities of all 
the others. 

For the sake of convenience let the crystal be a plate 
of thickness To parallel to the mean vectors H1 and HE. 
In the cases A, B, C to be studied each beam makes 
the same angle fp with the normal to the plate, and 
the path length through the crystal is T0/cos ~p. Con- 
sider a sharply defined direction of incidence, deviating 
by a small angle A from the ideal direction. 

Let P~(A, T) be the power of the ith beam at a 
distance of travel T into the crystal plate and / ~ =  
dP~/dT. The power losses due to absorption and to 
diffraction by the j th  lattice plane are respectively 
/~ =-/z0P~ and [~ = -  0":P~. Similarly the power gain 
due to diffraction of the j th  beam by the kth lattice 
plane in the ith scattering direction is P~=0"~P~. If 
there is n-fold diffraction one gets accordingly a system 
of n + 1 coupled equations of the form P~ = Xa~P:. The 
solutions will be of the type P~ =XA~eZ~ ~ where the 
Z:'s are the roots of the secular equation of degree 
n + 1 and where the coefficients A~ must be determined 
from the boundary conditions. The latter are P~(0)= 0 
for i ~ 0  and P0(0) -~0 ,  the total incident power at 
the crystal surface. Since absorption, represents the 
only real power loss, one must have SP~ = -/t0XP~ and 
hence XP~=~0 e-uor with T= T0/cos ~0. It is further 
obvious that e-Uor must be a particular integral of 
the differential equations. 

Under the assumed conditions the reflecting power 
0" will be 0"~=W(A)Qi, with Ql=leZFl/mc2g1223Lj 
where L~ is the Lorentz factor. For the present polari- 
zation effects will be ignored. 

The solution of the system of equations gives the 
quantities P~(A) while the observable powers are 
P~=fP~(A)dA. To obtain suitable expressions f o r / ~  

the exponentials eZi T can be expanded in series, and 
one encounters integrals of the form f0-:dA=Qj, 
f 0-~0-jdA =gQ~Q:, where g = f WEdA. 

The differential equations and their solutions are 
given below for the cases A, B, C of Figs. 1-3. The 
results for the special case of Fig. 2(b) are obtained 
if for case B one sets 0"1=0"2 and QI=Q2 . The well 
known formulas for the single diffraction case are in- 
cluded for the sake of comparison. 

Single diffraction 
Po P1 

Pa = 0"1 - / z 0 - a l  

P0 = ½~0e-U°r[1 + e -2~:] 
P l = ½ ~ 0 e - m r [ 1 -  e-2~l r] 

/~0 = ~0e-&r[1 -- QxT+gQ~T2+. . . ]  
P ~ = ~oTe-Uor[Q l - gQ~ T + . . . ] 

(la) 

(lb) 

(lc) 

Double diffraction, case A 

Po 
/60= - / z 0 - 2 a l  
/ t ~ l :  0-1 

P2 ~ 0"2 

Pi P2 

G3 --frO-- ~ 1 ~  ~3 

a3 is the reflecting power of H~-H2 .  (2a) 

PI= 

Po=½~oe-Uor[1 + 2e-3~:] 
Pz= i~oe-Uor[1 - e - 3 ~ : ]  (2b) 

/~0 = ~0e-U°r[1 - 2Q1T+ 3gQ~T z + . . . ]  
P ~ = ~ o T e - u o r [ Q ~ - $ g a ~ T +  . . .]. (2c) 

Triple diffraction, case B 

i~ 0 -.~ 
t51= 

t52= 

"/~3: 

Po P1 P2 P3 

- - ~  G1 ~2 G3 

G 1 - - ~  G 3 G2 

~3 ~2 G1 - - ~  (3a) 

/: =/Zo + aa + 0-2 + a3 

Po = ¼~oe-mr[1 + 
e--2(o~ +a2)T_ k e-2(u~ +aa)T + e--2(a2+aa)T] 

PI = ¼~oe-U°r[1 - 
e--2(o~ +oz)T_ e-2(al +ua)T + e--2(a2+aa)T] 

PE=¼~oe-Uor[1 - 
e--2(o~ +~2)T + e--2(o~ +%)T_ e--2(a2 +a3)T] 

P3 = ¼~0e-U°r[1 + 
e-2Ca~+aOr--e-2(~+~)r--e-2(°~ +~3)T] (3b) 

Po=.~oe-U°r[1 - (Q1  + Q2 + Q3)T 

+ g(Q~ + O~ + O] + Q1Q2+ 0 1 0 3 +  Q2Q3)T2+ . . .] 
Pl = ~oTe-U°r[Q1 + 

g(QEQ3-Q~-QaQE-Q1Q3)T+ . . .] 
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_Pz = ~oTe-Uor[Q 2 + 

g ( Q ~ Q 3 - Q ~ Q z - Q Z  Q z Q 3 ) T + . . . ]  

P3 = ~oTe-U°T[Q3 + 

g ( Q 1 0 2 - Q 1 Q 3 - Q z O 3 - Q ] ) T + . . . ]  (3c) 

Quintuple diffraction, case C 

Po P1 P2 P3 P4 P5 

/Sx= 

P2~--" 
t53= 

P4 = 
t55= 

--ff ~1 a l  ~3 ~3 ~5 

G1 - - ~  ~3 ~1 ~5 ~3 

G1 ~3 - - ~  ~5 ~ ~3 

~3 ~1 ~5 ~ ~3 ~1 

~5 ~3 ~3 ~I ~1 - -~  
(4a) 

/~ =/t0+2crl +2cr3 + G5. 

P0 =]'~0e--u°r[1 + 
2e-3(a~ +a~)rq_ 2e-(~,  +3o~+20~)T q_ e-(4a~+2~)T] 

PI = P2 =--~0e--u°r[1 -- 
e - 3(ax + ~ra)T .~_ e-  (~1 + 3 a~ + 20 n ) T __ e-  (401 + 205 ) T] 

P3 = P4 = ~ o e - U ° T [  1 -- 
e-3(~r~ +cry)T_ e--(cr,+3~3+2as)Tq_ e--(4~rt +2~s)T] 

Ps =~0e--u°r [1  + 
2e-  3(~ + ~gr_ 2e-  (=t + 3~ q - Z a n ) T  - -  e-  (4at + 2crs)T ] 

. . - a  

(4b) 
if0 = ~0e-U°T[  1 -- (2Q 1 + 2Q3 + Q5) T 

+ g(30~ + 302 + Q]+4Q103 + 2010s  + 

+ 2 0 3 0 5 ) T 2 + . . . ]  
-Pl = ~oTe-u°r[Q1 + 

g ( 0 3 0 5 -  2 0 ~ -  Q 103 - Q 105) T + . . . ] 

f f  3 =~oTe-Uor[Q3 + 
g(½Q~+QIQs-2Q1Q3 z z - - ~ Q s - Q 3 Q s ) T +  . . .] 

-P5 = ~oTe-u°r[Q5 + 

g(2Q 103 - 2Q aOs-  2 0 3 0 5 -  Q]) T + . . .  ] 
(4c) 

Discussion of the intehsity equations 

The basic formulas given in equations (1)-(4) contain 
a number of interesting features and the reader is 
urged to study them in detail. 

Only terms up to T z are specifically given in the 
expansions; but higher order terms can be added as 
needed. 

One important point about the formulas of equations 
(3c) and (4c) for the triple and quintuple diffractions 
should be given special mention. It is seen t h a t / ~  ¢ 0 
even when Q~ = 0. In other words, multiple diffraction 
can cause otherwise "absent" reflections to appear. 
Renninger (1937) was the first to observe and explain 
the appearance of such spurious reflections. 

The only purpose of the discussion to follow is to 
make realistic estimates as to the magnitude of the in- 

tensity effects, and to this end it is convenient to assume 
special, simplifying situations which will not affect the 
general validity of the conclusions. 

Disregarding terms in T 3 and higher powers all 
expressions Pi for diffracted beams can be given in 
the form 

~ ~- IoQi TJor[1  + ~]  

where the factor outside the bracket represents the 
integrated intensity in the limit of zero extinction. The 
quantity a, is proportional to g T  with the proportiona- 
lity factor known from equations (lc)-4(c). Specifically 
for the single diffraction case one has the well known 
result 01 = - Q l g T .  It is clear that 100a, measures the 
percentage correction due to combined extinction and 
repeated reflection. 

A realistic value of g for a crystal of small to mode- 
rate extinction is 2 × 102 which corresponds to a half 
width for W of 0.08 ° if W is an error function. For an 
average crystal one has in practical situations Q T =  
10 -3 for a strong and Q T = 5  × 10-5 for a weak reflec- 
tion. The single diffraction extinction correction is thus 
twenty per cent for a strong and one per cent for a 
weak reflection. Since gQ2T2~ 1 and Q T ~  1, the series 
expansions used to obtain equations (lc)-(4c) are 
justifiable. 

Table 1 gives the theoretical values of a, for various 
selected cases using g = 2 ×  102 and Q T = 1 0  -3 or 
5 × 10 -5 for strong or weak reflections respectively. 

Table 1. Multiple diffraction corrections 

Reflections 
^ 

Type of Strong Weal~ Relations 
multiple diffraction gQT=0.20 0-01 between Pi's 

Single Q1 

Double Q1 

Triple 
(a) Q1, 02, 03 
(b) QI, Q2 

t31 - 0-20 

131 -0"30 

Pl = P2 =/33 - 0.40 
Pl =/32 - 0.40 

Q3 133 3.59 
Quintuple 

(a) Q1, 03, 05 /31=P3=P5 - 0 . 6 0  
(b) Q1, Q3 /31=/33 - 0 . 6 0  

Q5 135 7.39 

When all reflections involved in multiple diffraction 
are equally strong, the extinction correction is in- 
creased by a factor of 1.5 for double, 2 for triple and 
3 for quintuple diffraction as compared with single 
diffraction. Thus for our standard strong reflection 
the correction is increased from - 2 0  to - 6 0  per cent. 

As shown in Table 1 the intensity effect becomes 
spectacular in triple and quintuple diffraction if one 
reflection is weak and the others strong. As a striking 
example consider triple diffraction with Q1 = Q2, Q3 = 0. 
One finds 

-P3/Px =g01T/1 - 2gQi T (5) 
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so that _P3/_Pa =½ i fgQiT=0.2.  (It must be remembered 
that gQ~T~ 1 is a condition which must be fulfilled in 
using the first order approximations). 

Although the above discussion is both sketchy and 
crude it serves to show that it is not normally permissible 
to neglect the effect of multiple diffraction in quantita- 
tive intensity work. The obvious way to circumvent 
such complications is to avoid making intensity mea- 
surements under simultaneous diffraction conditions. 
However, the considerations of the preceding section 
of this paper show that multiple diffraction (due to 
symmetry and chance) is a common phenomenon. 
Hence, before making any one intensity measurement, 
one needs to make certain that the experimental con- 
ditions are not such as to produce multiple diffraction. 

The writer has extended the study to include polari- 
zation as well as crystals of arbitrary shape. The results 
of these further investigations are given in the two 
appendices. 

The work was supported in part by the Advanced 
Research Projects Agency of the Department of De- 
fense under Contract SD-89. 

APPENDIX 

I. Polarization factors 

Polarization effects can be included in the equations 
in the following manner. Assuming the incident beam 
to consist of unpolarized X-rays, the electric vectors 
can be resolved into components along two conve- 
niently chosen, mutually perpendicular vibration 
directions (a) and (b). The differential equations for 
the P~'s can then be set up separately for each of the 
two vibration directions using the appropriate expres- 
sions 0"} a)= WQ} a) and a~b)= WQ~ b). Thus one gets 
distinct solutions _P~), /~}0) and the sought result is 
/~ = ~tltp(a)~ +_p~b)). Although the procedure is straight- 
forward the expressions become complicated if one 
goes beyond the quadratic terms in the series ex- 
pansion. 

The polarization factor p~ for a single deflection is 
defined by Q~pi = [Q}~)+ Q7')]/2, and one finds readily 
the familiar result p~=(1 + cos 2 200/2. 

Next consider a doubly reflected X-ray beam. The 
incident beam is first reflected by the lattice plane Hi 
in scattering direction u~ such that u0 . hi=COS 20~. 
The reflected beam is again reflected by a lattice plane 
H j = H ~ - H i .  The angle of scattering relative to the 
once-reflected beam is 201; but the scattering direction 
is u~. The two scattering angles 20~ and 20s do not 
uniquely determine the direction uz and hence one 
needs to specify a third angle 20x, given by u0 . uk= 
cos 20k, which measures the angle between the inci- 
dent and the twice-reflected beam. 

Accordingly one must use the notation p~l(k) for the 
polarization factor of a twice-reflected beam. The 
indices i, j designate the scattering angles for the two 

reflections and the index k the resultant scattering 
angle relative to the incident beam. 

The analysis of the problem gives as result 

p~j(k) =½[cos 2 20~ + cos 2 20j 

+ (cos 20e -cos  20~ cos 20t) z] . (6) 

Azaroff (1955) considered the same problem for 
another purpose. Instead of 20~ Azaroff used an 
auxiliary angle 0 which is not directly observable, but 
which is related to 20k in the following manner 

cos 20k = cos 20~ cos 20t + sin 20~ sin 20I cos 0 • 

In other words 0 is the angle opposite 20e in the 
spherical triangle of which 20t, 201 and 20k are sides. 
It is readily verified that Azaroff's equation (14) gives 
the correct expression for the quantity p~z(k)/pl. 

It is obviously true from equation (5) that p~t(k)= 
p1~(k). In the multiple diffraction situations with which 
this paper is concerned it is evident that 

pu(0) = (1 + COS 4 20~)/2 (7) 

since the incident beam twice reflected by the same 
lattice plane will be in the direction of incidence. 
However, it is important to note that the polarization 
factor is not given by equation (7) if the two reflecting 
planes are equivalent but not identical. In this latter 
case one has 

pu(k) = [2cos 2 20~ + (cos 20~-  COS 2 20l)2]/2. (8) 

Products QiQy and Q~ occur in the first order 
expansion terms, and by definition 

pil(k)Q~Ql_ xr,n(,)c)(a) a_ C)(b)C)(b)l (9) 
- - ~ 2 L ~ l  ~- i  - -~-~t  H I  . I -  

The multiple diffraction cases A, B' and C are 
degenerate in the sense that QI=  Q2 (A, B', C) and 
Q3=Q4 (C), and one must accordingly exercise care 
in deducing the appropriate polarization factors for 
the terms Q~ and Q]. 

By way of illustration the intensity formulas, with 
polarization factors, are given in detail for the non- 
degenerate (B) and the degenerate (B') cases of triple 
diffraction. 

Triple diffraction, case B 

ff a " ,~oTe-U°T[Q lPl + g{Q2Q3p23(1)- Q~p 11(0) 

- Q ,Qzplz(3) - Q 1Q 3p 13(2) } r ]  
with analogous expressions for Pz and P3. 

(10) 

Triple diffraction, case B' 
Pl = P z ~ o T - U ° Z [ Q a p l - - g  {pI1(O)+pal(3)}Q~T] 
P3'~'~ Te-uorr,q -- o t~3p3+g{pa1(3)Q~ 

-2paa(3)Q1Q3-p33(O)Q~}T]. (I1) 

H. Crystals of any shape 

In the first order approximation the power of the 
ith beam for a plane parallel plate can be given in the 
form 
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-Pi ~ IovA(lZo)[Qi + C~g T] 
where I0 is the incident intensity, v = ST (S the cross 
section of the incident beam) the irradiated volume 
and A(lzo)=e -uor the absorption factor. C~ is the 
appropriate factor given in equations (lc)--(4c). 

The approximate solutions for a crystal of arbitrary 
shape can be given in analogous form as 

-Pi ~- IovA(Ito)[Qt + CigT] (12) 

where 7'=AdA*/duo, A * = A  -1 being the appropriate 
absorption factor. 

The specific expression of equation (12) for single 
diffraction (with polarization included) becomes 

Pl~-IovA [Qlpl-gQ~p11(O)A dA*] (13) 
dlto J" 

Apart from a difference in notation this result is identi- 
cal with equation (13) of a recent paper (Zachariasen 
1963). 
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Extinction effects in a quartz sphere have been studied with the use of Cu Ks radiation. It is shown 
that extinction varies with scattering angle in accordance with the modified rather than the Darwin 
formula for the extinction correction. 

The data indicate that the quartz specimen contained 1.5 ~ of material in the Dauphin6 twin position, 
and it is suggested that it may be difficult or impossible to find quartz crystals (natural or synthetic) 
entirely free of such twinning. 

As a by-product of the extinction study all structural parameters of quartz were obtained with 
greater accuracy than hitherto reported and corresponding to R = 0.02. 

Introduction 

This investigation was undertaken to check experi- 
mentally the revised formula for the extinction cor- 
rection. It was believed that quartz would be a suitable 
crystal for the purpose because of simple structure, 
great hardness and high extinction. 

The study was carried out with Cu Kc~ radiation and 
a carefully selected, seemingly flawless, natural crystal 
which had been ground into a nearly perfect sphere 
of radius r=0.147 mm, corresponding to lLr=l.35. 

In the course of the work unexpectedly large dis- 
persion effects were observed, the intensities IH and 
I~ differing by as much as fifty per cent for some 
weak reflections. For the purpose of the extinction 
study the dispersion effects were eliminated by neg- 
lecting the imaginary part of the dispersion correc- 
tions to the atomic scattering powers and by using the 
mean intensity (IH+Ih)/2 to obtain the experimental 
structure factors. The observed differences l n - I ~  will 
be discussed and interpreted in the following paper. 

The intensities were measured with a proportional 
counter to a precision of two per cent for the very 

weakest, one per cent or less for the strong reflections. 
Because of the high symmetry multiple diffraction is 
not uncommon, and special care was taken to avoid 
making the intensity measurements under such con- 
ditions. 

Dauphin~ twinning 

According to the Dauphin6 twinning law the (HKL) 
plane of one individual coincides with the (HK[_) 
plane of the other. Ratios lnlCZ/IuKL as low as 0.02 
were observed for the pairs 106/106 and 502/502, and 
until the last stages of the investigation it was therefore 
believed that the specimen contained no twinned 
material. However, the observed structure factors for 
the weak components of pairs HKL/HK£ were con- 
sistently larger than the calculated values. These dis- 
crepancies could not be removed by modifications of 
parameters, extinction or f curves; but they could be 
explained by the presence of a small amount of twinned 
material (assumed to be uniformly distributed through- 
out the medium for mathematical convenience). 

A correction for Dauphin6 twinning was accordingly 
applied. If I~r L and I~rKz are the actually observed 


